
JOURNAL OF COMPUTATIONAL PHYSICS 48, 270-283 (1982) 

The Choice of Numerical Boundary Conditions for 
Hyperbolic Systems 

BERTIL GUSTAFSSON 

Department of Computer Science, Uppsala University, S-75223 Uppsala, Sweden 

Received January 7, 1982 

The aim of this paper is the discussion of two fundamental problems for mixed initial 
boundary value problems with applications in fluid mechanics. First, different stability 
properties are discussed, which are of importance for long time integrations and steady state 
calculations. Second, a new numerical technique for problems with an artificial boundary is 
introduced. 

1. INTRODUCTION 

The general term stability for a difference approximation to a time-dependent 
problem can be given many different interpretations. For ordinary differential 
equations there are presently so many different kinds of stability defined, that the 
alphabet seems to be too short for the one-letter type labeling starting with A- 
stability. For partial differential equations there are fewer definitions. All the different 
stability definitions for ODES can of course be applied to a PDE once the 
dscretization in space has been made. In fact, the procedure of semi-discretization 
followed by the use of a standard ODE solver for the resulting time-dependent system 

au/at = Pu (1) 

has gained popularity. For this so-called “method of lines,” the ODE-stability theory 
is frequently used. One must, however, be aware that system (1) depends on the step 
size h, and the number of equations is unbounded when we consider arbitrary 
small h. 

When one is interested in the solution over large time intervals, or when a time- 
dependent method is used for obtaining a steady state solution, all methods which 
allow growing solutions are of course useless. On the other hand, a method which for 
a given fixed step size gives solutions which converge to a steady state solution might 
have very bad stability properties. Recently Yee et al. [S] defined P-stability for 
initial boundary value problems, such that stability holds in the sense of Gustafsson 
et al. 14, Definition 3.31 and furthermore such that (almost) no growing solutions are 
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allowed. The last condition is made precise by requiring that the operator Q in the 
difference scheme written in one-step form 

u ntl_ - Qu” (2) 

have no eigenvalues outside the unit circle. 
In this paper we shall analyze these matters further for general hyperbolic initial 

boundary value problems. Sufficient conditions are given such that all the eigenvalues 
of Q are inside the unit circle. 

If the equations are defined on a domain which is unbounded in space, the most 
common computational technique are based on the introduction of an artificial 
boundary. If the hyperbolic system has characteristics pointing into the 
computational domain, then extrapolation procedures do not work well, as was 
shown in 151. The construction of stable and convenient conditions at artificial boun- 
daries has been considered by many authors. Engquist and Majda 121 designed 
absorbing boundary conditions, Hedstrom [6] constructed a similar type, Rudy and 
Strikwerda 171 considered the steady state problem for the Navier-Stokes equations, 
and managed to speed up the convergence rate by introducing a parameter in the 
boundary condition, Bayliss and Turkel [ 1 ] derived a downstream boundary 
condition for the Euler equations using the asymptotic behaviour of the wave 
equation. 

In Section 3 we shall introduce a new numerical technique which is based on the 
very natural requirement that the solution remain bounded on the infinite domain. It 
is applied to the down stream boundary problem in fluid dynamics for the Euler 
equations. The full report on this latter work will be presented in a joint work with 
Ferm 131. 

2. STABILITY 

It is well known that the numerical boundary conditions for a hyperbolic problem 
may introduce instabilities to a difference approximation which is stable for the 
Cauchy problem. One reason for this sensitivity is that the energy of the true solution 
is almost conserved, the only dissipation is created through the boundary. As an 
example, consider the simple problem 

u, = ux, O<x<l, o,<t, 

u(l, t) = 0, u(x, 0) =f(x). (3) 

With the norm defined by 

J/uJ(* =j; u(x, t)‘dx 
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we get immediately 

(d/d) 11 u /I2 = -u(O, t)‘. 

A semi-discrete approximation is 

(4) 

i3uj/cYt = D, uj, j= 1,2 ,..., N - 1, 

q&) = 0, 

uj(“> =fj 3 j = 0, 1 ,..., N, (5) 

where D, is the usual centered difference operator. An 
required at j = 0, and we use zeroth-order extrapolation 

With the norm defined by 

extra boundary condition is 

(6) 

a simple calculation shows 

$11 ul12 = -u,(t) u,(t) = -u&)* (7) 

which is completely analogous to (4). The accuracy of (6) is too low, however, and 
we may consider first-order extrapolation 

u,(t)= 224,(t) - u2(t). (8) 

With the norm defined as above, we get 

$ II# = -m2 - %(th,(t) - u2(t)). 

The last term destroys our estimate, and the sign of the right-hand side is unknown. 
Extra boundary condition (8) has introduced the possibility of an increasing energy 
represented by the norm chosen. This does not mean that the difference scheme is 
unstable; it can be shown that with another choice of norm, we get the energy 
dissipation back. The example only serves as an illustration of the sensitivity of the 
approximation to the choice of boundary conditions. The situation becomes even 
worse for the fully discretized problem. For example, if a centered difference operator 
is also used in time, resulting in the leapfrog scheme, it is well known that if the 
operator P in (1) has eigenvalues in the left half plane, there is a growing mode in the 
solutions to (2). This again does not by itself necessarily mean that the scheme is 
unstable, but in this case it can be shown by the normal mode analysis that it really 
is. 
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Sometimes it is argued that a sufficient test would be to compute the eigenvalues ,U 
of the matrix Q in (2) and make sure that there is none outside the unit circle and 
only simple ones on the unit circle. The following example shows the insufficiency of 
such a procedure. 

The Lax-Wendroff scheme for the model equation U, = U, is 

u.7 + ’ = (I + kD, + (k2/2) D, D-) ui”, j=l,2 ,..., N-l, 

where D, and D- are the forward and backward difference operators respectively. 
Instead of specifying the value at j= N, we reverse the boundary conditions used 
above and obtain 

u” = 0 0 3 u” = un !\’ N-l’ 

This simulates an extrapolation procedure at a subsonic downstream boundary, and 
an overspecification at a subsonic inflow boundary, see 15 1. The resulting matrix 
representation of the operator Q in (2) is 

Q= 

2 

1 -/I2 ++; 

2 

-;+; ..* . . 0 

where 1 ,< 1 is the ratio between the time step k and the space step A. The 
eigenvectors (u,, v2 ,..., v,,,- ,)’ must satisfy the relations 

(-l +L)(A/2)vj-, + (l -A2)vj+ (l +A)(l/2)vj+l =,UVj, j = 1, 2,. .., N - 1, 

vo = 0, uN=u,v-,. (9) 

The first equation is an ordinary difference equation which has the solution 

vj=u,K{ +a,K;, K, f Kz, (10) 
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where K,, K* are the roots of 

(- 1 + 1)@/2) + (1 - 1’) K + (1 + 1)(1/2) K2 = ,DK. (11) 

The boundary conditions imply 

u,+u2=0, (K~-K~~‘)u, +(K;-K~-‘)u~=~. (12) 

An eigenvector and corresponding eigenvalue ,U exist if and only if this system has 
a nontrivial solution, and the condition for this is 

(13) 

A straightforward calculation using (11) shows that if N is odd, all the eigenvalues ,c 
are strictly inside the unit circle. Therefore the solutions u” will eventually die out as 
n goes to infinity, and there might be a temptation to consider the scheme as stable 
for odd N. If, however, an inhomogenous term is introduced simulating rounding 
errors 

,y+’ = Q$ + EJ. (14) 

the scheme behaves very poorly. The finer a mesh that is used (of course keeping the 
mesh ratio A), the worse the solutions becomes, as can be see in Fig. 1. The reason is 
that the scheme is unstable, which is easily shown by the normal mode analysis 151. 
It is sufficient to study each boundary separately, and in order to analyze the effect of 

3.0 

2.0 

1.0 

FIG. 1. Difference schemes with all eigenvalues p(Q) inside the unit circle; (-) stable, (--~) 
unstable. 
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the second condition in (9), we can also define the corresponding approximation for 
u, = -u, 

,;+* = (I-kD,+(k2/2)D+D_)ui”, j = 1, 2,..., 

un zz u* 0 1, 5 (uJ)2 h < co. 
j-0 

The normal mode analysis is analogous to the eigenvalue calculation above. 
We look for nontrivial solutions to the resolvent equations 

zvj=(1-kDo+(k*/2)D+D~)uj, j = 1, 2,..., 

(15) 

(16) 

For ]z/ > 1, one can show that the last condition implies that there is only one mode 
in the solution, i.e., vj = UK~, where K is the root of 

ZK=(l + 2)(1/2)+ (1 -A2)K+ (-1 + d)(1/2) Kz 

satisfying 1 K 1 < 1 for ]z 1 > 1. Obviously, a nontrivial solution exists if and only if 
K = 1, which happens when z = 1. One says that there is a generalized eigenvalue at 
z = 1, and the approximation is unstable. 

If, on the other hand, the boundary conditions are posed in the more normal way 
such that we have for the original problem 

u; = u:, u;, = 0, (17) 

then the scheme is stable. The numerical experiments for this approximation with an 
inhomogenous term introduced are represented by the dashed line in Fig. 1. The norm 
is practically independent of the mesh size in this case. As discussed in the 
introduction, for long time integrations no growing modes can be allowed in the 
solution. Therefore it is natural to require that in addition to stability the operator Q 
in (2) have no eigenvalue outside the unit circle. 

Since one may want to use the approximation for steady state calculations, it is 
actually desirable to require that all the eigenvalues of Q be strictly inside the unit 
circle. In that way convergence is guaranteed when the number of time steps tends to 
infinity. We say that the problem has only decreasing modes. The normal mode 
analysis and the stability theory in [4] have the advantage that a problem defined on 
a domain with two boundaries can be divided in two quarter space problems 
(10 <x] X [O < t] and [x < 11 X [0 < t]) which are analyzed separately. We will 
investigate under what conditions any conclusions about decreasing modes for the 
two-boundary problem can be drawn from the analysis of the quarter space problems. 
We take the view that it is good enough if one can show that only decreasing modes 
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are present for N sufkiently large, provided the quarter space problems are stable. 
(From now on “stable” refers to 14, Definition 3.31.) 

Let us consider the eigenvalues calculation for the Lax-Wendroff scheme in some 
more detail. The elements of the eigenvalues of the eigenvector u have form (lo), and 
the different modes K,, rc2 satisfy (11). For l,ul > 1 the two roots are separated by the 
unit circle, and we define the roots such that IIC, / < 1, /K*/ > 1. Since the condition 

K1K2=@- l)/(n+ 1) 

is always satisfied, there is a constant 6 > 0 independent of ,U such that 

In fact one can prove that K* approaches the unit circle only when ,U approaches 1, 
and in this case K* = 1. For stable boundary conditions (17) the coefficients (J, , uz in 
(10) satisfy 

(I-K&7,+(1-K')D,=O KYCJ, + K':'O* =o (18) 

and the condition for a nontrivial solution is 

1 -K, -t-(N)= 0, (19) 

where 

r(N)= (KJK*)~ (1 -K*). (20) 

The term 1 - K, is well separated from zero and r(N) vanishes when N tends to 
infinity. Therefore the result is 

The operator Q for the problem with two boundaries has all its eigenvalues 
strictly inside the unit circle if N is sufficiently large. 

We will now generalize these results to larger classes of equations and approx- 
imations. Consider the general hyperbolic system with constant coefficients 

ut = Au,. (21) 

Without restriction it can be assumed that the (m x m) matix A has diagonal form. 
The difference approximation is 

where Q, are difference operators in space. Boundary conditions are specified at 
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x = 0 and x = 1. The symbols 0,(19), 0 < IO]< 71 are obtained after Fourier transfor- 
mation. It is assumed that the von Neumann condition is fulfilled, i.e., the equation 

I 
A- I(@ - f.  z-$$9,] u = 0, v  = (v(QJ2),..., lP)T, (23) 

has no nontrivial solution for ]z/ > 1. The resolvent equation for (22) is 

9 

zQp,v= x z-“Q,,v. (24) 
,,=o 

This difference equation in space can be written in one-step form 

wj+l = MWj. 

It is shown in [4] that M can be transformed to block diagonal form 

T- ‘(z) M(z) T(z) = diag(l, , L,, N, , N,). 

(25) 

(26) 

The properties of the blocks Lj, Nj when z approaches the unit circle are crucial for 
the stability theory. For a large class of approximations, class R, the following 
inequalities hold in the neighbourhood of any given point z. on the unit circle: 

LFL, < (1 -s>r, L,*L,,<(~--)(1+-)A 

NI*N,>(l+d)Z, NfN, > (1 + 4(lzl- 1) 1, 6 > 0. 
(27) 

The eigenvalues of the different blocks are the roots ‘cj to the characteristic equation 
derived for the Lax-Wendroff scheme above. In that case it was demonstrated that 
the block L, is empty near the whole unit circle, and that N, is empty except near 
z2 = 1, where N, is empty. We shall prove the following general result for problems 
with two boundaries: 

THEOREM. Assume that both quarter space problems are stable and that 
inequalities (21) are fulJlled. Zf either L, or N, is empty, then there are only 
decreasing modes in the solutions to the two boundary problem for N sufficiently 
large. 

Proof Without restriction it can be assumed that M has form (26). Assume first 
that L, is empty. Then wj is partitioned correspondingly 

wj = (Uj, yj”, yj2’)‘. 

The stability assumptions imply that without restriction the boundary conditions can 
be written in the form 

v. + D, y;” + D, yr’ = 0, E,v,+y;‘=o, E,v,~+y~‘=O 



278 

or equivalently 

BERTIL GUSTAFSSON 

v. + D, y;” + D, y:’ = 0, 

-E, Lf’(D, yb” + D, yx’) + Nyyb” = 0, 

-E, Lf’(D, yb” + D, y;*‘) + Nyb” = 0. 

Hence, the condition for a nontrivial solution is that the matrix 

-E,Ly(D,(I - NFNE, LyD,)-’ E, L;D, + D,] + N’; 

be singular. Obviously, inequalities (27) makes this impossible for N sufficiently 
large. The case that N, is empty is treated completely analogously, and the theorem is 
proved. 

It was shown in [4] that inequalities (27) are fulfilled for dissipative approx- 
imations. 

The requirement of an empty L, or N, is normally fullfilled for systems (2) with all 
the eigenvalues of A having the same sign. This was proved for the Lax-Wendroff 
scheme above since (22) is a set of scalar equations. If the requirement is not 
fulfilled, the situation is still not too bad for dissipative approximations or “almost” 
dissipative approximations. The reason is that only those points where L, and N, are 
not empty require an investigation. We illustrate by an example. Consider the 
problem 

w, =Aw*, A=[; -;I, w=[ ;I, 

v(0, t) = 0, u(1, t)= v(1, t) 

and the Lax-Wendroff approximation 

w ‘+’ = (I + kAD, + (k2/2)A2D+ Dp) id’ 

with the boundary conditions 

v; = 0, ur;. = v;., vi, = 2v;; , - l.$ * , u’I = Zu” - Ufl 
0 2' 

Both quarter space problems are easily shown to be stable. 
Using the same notation for the variables in the resolvent equation we have 

uj=a,K.; +a,rc;, vi = 5,/t; + t2p:, 

where K, , ~2 and ,u, , ,u2 are rOOtS to 

ZK = K + (1/2)(K* - 1) + (A2/2)(K - 1)2 
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and 

zp = p - (n/2)@’ - 1) + (A2/2)@ - I)*, 

respectively. 
The only crucial point where the conditions in the theorem are not fulfilled is 

z = 1, where IK,~ < 1 - 6, K, = 1, ,~i = 1, ,u~ > 1 + 6. (The identification with the 
general notation in (26) is obtained through the relations L, = K, , L, = ,u, , N, = p,, 
N, = K,.) The equation for U, however, is independent of u and from the scalar result 
we know already that there is no eigenvalue z with /z 1 > 1 for N sufficiently large. 
The boundary conditions for u imply 

KM0 + KK(, zz /f”r + /‘l’r 1 I 2 2 I I 2 2’ 

(K,-1)*~,+(K2-l)*~,=0. 

Since r1 = r2 = 0 for /zI > 1, the scalar result for u applies, and there are obviously 
only decreasing solutions for N sufficiently large. 

Let us go back to the original model example U, = U, and study the backward 
Euler approximation 

(I-kD,)u~+‘=u;, j = 1, 2 ,..., N - 1, 

240” = 2u; - u;, u;, = 0. 

The characteristic equation is 

Z(K - (1/2)(K* - 1)) = K. (28) 

For K = eie we have 

z = l/( 1 - Ai sin 19) 

and z hits the unit circle at z = 1 not only for B = 0 but also for B = TC. For z = 1 the 
two roots to (28) are K, = -1, ~~ = 1, which shows that L, and N, in (26) are 
nonempty. This point, however, is easily investigated. The general solution to the 
resolvent equation for z = 1 is vj = 0,(-l)’ + u2 with o, , o2 satisfying 

4a, = 0, (-1)” u, + u* = 0. 

Obviously there is no nontrivial solution to this system, and therefore only decreasing 
solutions exist for N sufficiently large. 

We end this section by making a comment about problems with nonconstant coef- 
ficients. The analysis above gives no information about the behaviour of the solutions 
to problems with variable coefficients. In fact, it must be expected that in such cases 
there exist growing solutions even if the analysis above shows decreasing solutions 
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for constant coefficients. We would like to emphasize that this -is in general the 
correct behavior-u. Consider the nonlinear model problem 

U,=UU,, u( 1, t) = 0, 4-5 0) =f(x) 

with positive solutions U. The norm (1 u/I2 = ii u(x, t)’ dx is decreasing since 

-$‘= -$o, q3. 

The linearized problem is 

u, = a(-% t> ux, a(x, t) > 0, 

u( 1, t) = 0, u(x, 0) =f(x), 

and for the same norm we obtain 

2auu, dx = -a(O, t) ~(0, t)’ - [’ u;u2 dx. 
-0 

Obviously there may be growing solutions to this problem. Therefore, if the full 
nonlinear problem cannot be analyzed, it makes sense to “jump over” the variable 
coefftcient case and analyze the problem with constant coefficients. 

3. UNBOUNDED DOMAINS 

We shall consider an ideal fluid in a channel according to Fig. 2. The Euler 
equations are 

w, + A(w) w, + B(w) w, = 0, (29) 

where with the usual notation 

The flow is assumed to be subsonic, but no data are available at D,. 

-I ID - 
-1 lp- 

x-o X-P 

FIGURE 2 
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Seeking the steady state solution, we shall construct the downstream conditions 
using the condition 

sup 14 < 00, 
X.Y.l 

1 WI2 =p* + u* + v*. (30) 

The solution still contains an undetermined constant, therefore we add a condition on 
the massflow: 

I”pu dy = m.  (31) 
-0 

Since m  does not depend on x, it can be measured at the inflow boundary. The 
question is how these conditions can be converted into something usable in a 
computational procedure. 

For the derivation it is assumed that the matrices A and B in (29) are constant, 
and since v = 0 at the boundary, we assume a zero diagonal in B; p and u are 
expanded in cosine series in the y direction; v is expanded in a sine series: 

p(x,y)= T /T,.(x) cos Ttuy, 
w=o 

u(x, y) = $y u^,(x) cos ?ruy, 
u-0 

v(x,y) = g C(x) sin 7rwq’. 
w _ 1 

Introduction of these expansions into the steady state system gives the transformed 
equation 

The solution has the form 

where the scalars Aj and the vectors q,i satisfy the eigenvalue problem 

(32) 

(33) 

(‘aj + B) qi = 0. (34) 
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Here ,I, is positive, and condition (30) therefore implies a, = 0 for w # 0. A 
straightforward calculation gives the final form of the solution 

[ ;;] =cL, [i] +a, [-p”] e-(wnc/s)(x-4), w= 1,2,.... (35) 

The quantities U, p represent the coefficients in 2, g; and s is defined by s = 
d/E2 - U2. Equation (35) immediately gives the desired conditions to be used at x = p 

p^, = -(lqqEs) 6,) w = 1, 2,.... 

The remaining condition for & is obtained from (3 1). 
It can be shown by the energy method that the system 

(36) 

al; a$ W+~" 
at ax 

+ m&, = 0, w = 0, l,..., (37) 

is well posed with the boundary conditions derived above. Therefore methods for 
time-dependent problems can be used for computing the steady state solution. 

In our numerical experiments we have used Newton’s method for a difference 
approximation using centered differences in both directions. For comparison two 

FIG. 3. Values of p as a function of x. 
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other boundary procedures have been used. In the first the conditions are based on 
the commonly used assumption that the solution has flattened out at X=/I’. If 
UJ, = w, = 0 in (29), it follows that p,, = 0. With the discretized version of this 
equation as the downstream boundary condition (everything else the same as above) 
a method is defined which is denoted by RC in Fig. 3. 

The second alternative used for comparison is the Bayliss-Turkel method 
mentioned in the introduction, which is denoted by BT in the figure. It should be 
noted that this method can be modified such that it takes the solid walls into 
consideration, and in this way it would give better solutions 19 1, 

The boundary D, was placed at x = & and x = h. The figure shows the 
remarkably good agreement between the correct solution and the one obtained with 
conditions (36) (denoted by FG). 
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